2017年2月7日星期二

Cryogenic Nanopore NMR Analyzer

NMRC12 series is a NMR-based nano-pore analyzer used to study the pore structure and distribution of porous materials. The determination of pore distribution can be measured and calculated by applying the relationship between the pore size and the freezing point of pore fluid. This NMR technique could be used to monitor the phase transition in pore fluid in real time and the detection range of pore size falls in 2 to 500 nm if appropriate fluid samples are chosen.
Application Indexes
Temperature range: – 30 0C~ 40 0C/ – 50 0C~ 40 0C (accuracy: ± 0.01 0C);
Cooling rate:10C / min;
Sample volume: 0.5 cm3 ~ 1 cm3;
Pore size: 2 nm ~ 500 nm.
Static fluid in pores improves the accuracy and resolution during the measuring course of cryogenic NMR method;
The modular gas supply system provides a stable and dry air flow as the media, which reduces signal minimum and can work for a long period of time;
Ultra-low temperature thermostat system at – 60 0C gurantees a stable cooling source which can cool down the air flow quickly and stablize it;
Two-stage heating resistors heat the sample chamber rapidly and control the temperature precisely;
NMR analyzer system with mature technology and full NMR capabilities: stable magnetic field, short dead time, and high SNR;
Probe designed for low temperature isolates the heat exchanges between sample chamber and the magnet effectively;
The powerful software with friendly user interface offers a fully automated solution including calculation, temperature setting, sampling, and data process plus figure exporting.

2017年2月6日星期一

EDUVMR NMR & MRI System

The EDUMR virtual data acquisition and image reconstruction teaching software is a low-field magnetic resonance analyzing and imaging simulation system combining NMR and MRI system all in one. By using this virtual NMR analyzer signal acquisition and image processing software, we can easily build up a teaching platform, and the realistic teaching of NMR principles and techniques become much more achievable. The virtual magnetic resonance imaging system can simulate the entire process. With the parameter driven interface users can select imaging sequence, the original level and imaging technology, carry out the relevant data collection process and perform K space filling of reconstructed images. The use of virtual systems allows many students to learn simultaneously without the need to invest in expensive hardware or several supervisors to train users.
Advantages
EDUVMR
Perform virtual sequence selection, parameter adjustment, data acquisition, K space filling, image reconstruction function; The influence of magnetic field in homogeneity and electronic noise can be simulated; Minimal investment in hardware is an advantage; Perform fat suppression imaging; Perform water suppression imaging; Perform Bounce-point Imaging; Perform Half-Fourier scanning &Imaging; Overcomes the problem of long time of acquisition through inadequate instrumentation; More than four pulse sequences (SE sequence), FSE sequence, IR sequence, GRE sequence) can be used for virtual imaging data collection; Observe how the scan parameters affect the image; Minimize the impact of gradient eddy current, analog acquisition in severe T2-weighted images; Adjust the data acquisition to a normal speed and a very-fast speed.

2017年2月5日星期日

Difference Between T1 and T2 Imaging in MRI?

T1 is a rate of longitudinal relaxation. When we tip the magnetization in tissue away from its alignment with the scanner’s magnetic field, it takes a little bit of time for it to go back to its equilibrium low energy. That rate of change is T1.
T2 is a rate of transverse relaxation. I think “spin-spin” is a confusing term, though it is commonly used. After we tip magnetization away from its alignment with the field axis, it precesses (rotates) around that axis, kinda like a gyroscope or a precessing spinning top. Neighboring ensembles don’t have the exact same precession frequency. There is a spread in these frequencies. Therefore, neighboring ensembles accumulate a phase relative to each other resulting in their signals gradually cancelling each other out, until the signal disappears. This rate of change is T2 (actually, it’s T2* – “Tee two star”, which is strongly related to T2).
T1 is different in different tissue types, as is T2, and T2*. These values also change with some pathology. relaxation rates are one form of tissue contrast. We can get an image that’s T1-weighted, or we can actually do a fitting and get a quantitative T1 map. The same is true for T2 or T2*. We can get a qualitative T2-weighted image, or a quantitative T2 map. I think radiologists need to get used to the quantitative maps, as the qualitative data may not be as reliable, and doesn’t represent a precise measurement. It can vary substantially based on measurement conditions and the setup. Yet, change apparently is tough – radiologists still rely heavily on qualitative data instead of the alternative, which actually can be used to make statistical inferences.
Image contrast is the goal in all imaging procedures. The imaging technique will emphasize certain contrast characteristics of anatomical structures and allow us to differentiate the structures and determine which structures are abnormal.
MRI structural image contrast is natively (i.e. without using contrast enhancing agents) superior than CT and other imaging techniques. In both CT and MRI system, image contrast is a function of tissue density. For MRI in which the source of signal are the protons (especially hydrogen protons), the type of density that matters the most is proton density. In addition to tissue density, tissue relaxation properties contribute to image contrast in MRI (but not CT). There are two types of relaxation properties: T1 relaxation and T2 relaxation. Both types have been correctly described by the other responders but let me state it in a slightly different way. During the process of T1 relaxation, protons reorient resulting in recovery of longitudinal magnetization. During the process of T2 relaxation, protons dephase (spin becomes desynchronized) resulting in decay of transverse magnetization.